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The deployment of solar-based electricity 
generation, especially in the form of photovoltaics (PVs), has 
increased markedly in recent years due to a wide range of fac-
tors including concerns over greenhouse gas emissions, sup-
portive government policies, and lower equipment costs. Still, 
a number of challenges remain for reliable, efficient integra-
tion of solar energy. Chief among them will be developing new 
tools and practices that manage the variability and uncertainty 
of solar power. 

Short-term uncertainty (up to a week ahead) can be 
managed with many possible solutions, such as increased 
demand-side participation, greater coordination to balance 
allocation among areas, and deploying more flexible—but 
often also more expensive—methodologies like energy stor-
age. However, one of the most effective and economical ways 
to integrate solar, particularly at current penetration levels, 

is by forecasting the expected power output and using these 
forecasts to more reliably and efficiently operate the system. 

Solar forecasts are already used by a variety of stakehold-
ers in the power industry. System operators use solar forecasts 
to schedule generation, procure operating reserves, and ensure 
sufficient flexibility to manage changes in output. Market par-
ticipants use forecasts to manage their generation portfolios: 
for example, in Germany, 38 GW of solar capacity is traded on 
the energy market—an amount that strongly impacts market 
prices so that even traders who do not sell solar energy use 
solar forecasts.

Previous issues of this magazine have provided an over-
view of wind forecasting, including the production of wind 
power forecasts and their end use. While similar to wind fore-
casting in many ways, solar forecasting has its own unique 
characteristics, which this article will explore. In particular, 
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solar power forecasting can be differentiated from wind forecasting in that much of the variability and 
uncertainty is related to visible cloud movement. This can be forecast in the short term by technologies 
such as ground-based sky imaging and satellite imaging systems; these are described here, along with 
potential drawbacks related to cloud formation and dissipation.

The underlying “clear-sky” solar PV output is easily calculated based on the position of the solar 
panels relative to the sun, so the main challenges lie in predicting the actual irradiance at the solar panels 
given the influence of clouds, aerosols, and other atmospheric constituents, and also PV panel efficiency, 
which is temperature dependent. Adding to these challenges, large amounts of solar are being installed 
on the distribution system, often behind the meter (BTM), which means that transmission system opera-
tors see only load netted with the solar generation rather than the output of the solar system.

In this article we outline current methods used to produce solar PV power forecasts, focusing on 
aspects unique to solar forecasting. We also explore the nuances related to BTM solar forecasting and 
how these interact with load forecasting. In addition, we summarize the current performance of solar 
forecasting and then end by discussing improvements on the horizon that will increase operators’ abil-
ity to accurately forecast solar PV generation.

Current Solar Forecasting Techniques
Forecasting solar output involves a variety of methods based on the time frame being forecast, the data 
available to the forecaster, and how the forecast is to be used. Past issues of the magazine have included 
articles on wind forecasting covering many basic forecasting techniques also important for solar (see 
the “For Further Reading”section). These methods, which are broadly categorized in Figure 1 according 
to the time horizon in which they generally show value, include numerical weather prediction (NWP) 
and the use of model output statistics, as well as statistical learning methods, climatology, and ensemble 
techniques that blend different kinds of forecasts. 

 To achieve the greatest accuracy, forecasters supply environmental inputs, such as irradiance and tem-
perature, to models that transpose the irradiance into the incident plane of array (i.e., by taking the beam 
direction and solar panel orientation into account) and then convert the irradiance to power. Several meth-
ods can be used for this purpose; these are described below beginning with those that perform best on the 

shortest look-ahead time frames. 

Time Series Prediction with  
Statistical Learning Methods
Direct observation of irradiance (such as from pyranometers 
or other measurement devices) can be used with time series 
statistical learning methods to project subsequent conditions. 
Historical records of site irradiance are used to train these 
prediction methods, while real-time measurements identify  

current condition on which to base the forecasts. Methods used include artificial neural networks, 
regression models, autoregressive models, support vector machines, and Markov chains, as well as 
composite methods, such as using genetic algorithms to optimize a neural network. These methods 
work best for the intrahour time horizon, but they may have some value out to two to three hours or 
more, especially when used in combination with other methods.

Sky Imagers
Sky imagers are digital cameras that produce high-quality images of the sky from horizon to hori-
zon, which are used for detecting clouds, estimating cloud height above ground, and calculating cloud 
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motion. Clouds scatter some wavelengths of light more than 
they do others, and these can be used to categorize clouds as 
thick and thin as well as to differentiate them from aerosols 
or dust. Consecutive images can estimate cloud velocity and 
so can provide a very short-horizon forecast. If additional sky 
imagers are available, triangulation can provide information on 
cloud base and depth as well as differential advection speed at 
different cloud levels. Sky imagers are of significantly decreas-
ing value beyond approximately a 30-min time frame; more-
over,  they are expensive to use relative to most other forms of 
very short-term prediction.

Satellite Imaging
Providing value for a longer look-ahead time frame, geo-
stationary satellite data from networks such as the National 
Oceanic and Atmospheric Administration (NOAA) Geo-
stationary Operational Environmental Satellite network for 
North and South America and the MeteoSat network for 
Europe, Africa, and central Asia supply information about 
cloud properties and movement. First, a physically driven 
model predicts clear-sky conditions at a specific site, using 
inputs like aerosol content, water vapor, elevation, and ozone. 
This modeled clear-sky irradiance is then modulated by esti-
mated irradiance derived from satellite images. Sequential 
satellite images are combined to create cloud motion vec-
tor fields that can be used to predict future cloud locations. 
This technique has been shown to be effective in forecasting 
irradiance from one minute to as far as five hours ahead. 
However, it performs less effectively during conditions when 
clouds are rapidly forming or dissipating, such as convective 
and marine layer cloud regimes. 

Numerical Weather Prediction
NWP systems have been the workhorse of forecasting 
applications for many years. Traditionally, these have per-
formed best for the time horizon from six hours to two 
weeks; recently deployed rapid-update systems (such as 
the NOAA High-Resolution Rapid Refresh system) can 
provide value at shorter time scales. NWP methods have 
been well described in previous articles in relation to 
wind. These involve solving the Navier-Stokes equations to 
model the weather, combined with modules that compute 
other physical processes, such as radiative transfer, land 
surface effects, and cloud microphysics parameterization. 

Historically, these models have been optimized for pre-
dicting variables such as temperature, humidity, probability 
of precipitation, and wind. Only recently has there been an 
emphasis on improving prediction of surface solar irradiance. 
Statistical learning methods are often used to correct for errors 
in the NWP model output and to blend output from multiple 
models in a process referred to as model output statistics. It is 
typical for such methods to improve upon the raw forecast of 
an NWP model by about 10–15%. 

Ensemble Forecasting
Ensemble methods are important to deal with the uncer-
tainty inherent to solar power forecasting, particularly dur-
ing morning and evening ramps and with cloud cover and 
fog. An ensemble consists of a collection of forecasts and 
can represent the uncertainty in the calculation of the state of 
the atmosphere inherent in forecasting methods. Two major 
techniques are employed in creating an ensemble: the first 
adds perturbations to the initial state of a forecasting model, 

figure 1.  An overview of solar forecasting methods, based on time horizon for which they show value.
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figure 2.  An example of a two-day solar power forecast with nine percentiles (P10 through P90) and the actual measure-
ments (black dotted line.)
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while the second uses different numerical models or phys-
ics schemes. Both provide insights into the likelihood of 
extreme events, such as ramps of solar output due to changes 
in cloud cover, fog, or other atmospheric features. Ensem-
bles can be applied to any forecasting approach, although 
they are most well developed for NWP.

Ensemble forecasts for solar generation are used in power 
markets where the uncertainty of forecasting leads to price 
volatility. They may also be employed to help in determining 
reserves or scheduling generation. In such real-world applica-
tions, percentiles can be used to make the uncertainty visible 
and so more easily interpreted. Figure 2 shows how percen-
tile “bands” change in size around a mean value (white line) 
and the true generation (black line). Percentiles represent a 
value below which the given percentage of the outcomes is 
expected to fall. For example, 10% of the outcomes should 
fall below the tenth percentile (P10) value, while 90% of the 
outcomes should fall below the 90th percentile (P90) value. 

Distributed and Behind-the-Meter  
Solar PV Forecasting
A number of factors can impact how solar forecasts are 
developed and used, particularly when the solar generation is 
connected to the distribution network or is BTM:

✔✔ Whether the generation of a commercial or residential 
solar power system is recorded on its own or aggre-
gated with customer load.

✔✔ Whether telemetered meter data is available in real time.
✔✔ Whether detailed static data (i.e., metadata) is avail-
able (the plant location, the PV geometry, nearby 
obstructions, hardware information, and the like). 

At a large solar plant, meter data is typically available 
in near-real time and site metadata is generally known. For 
smaller distribution connected plants, dedicated meter data 
is usually recorded but is often not telemetered in real time. 
Metadata may be difficult to obtain as well. For BTM solar, 
real-time generator data is rarely known, meter data is often 
net of load, and metadata is difficult to obtain.

Therefore, distribution-connected PVs, in particular BTM 
PVs, can be more difficult to forecast. If detailed metadata 
is available, the data can be combined with irradiance and 
weather data, typically from satellite and/or NWP sources as 
described earlier. For example, information about all PV sys-
tems in the state of California is recorded and then combined 
with high-resolution irradiance values and weather predictions 
to forecast output for the entire state. Such a “bottom-up” 
approach is employed by the California Independent System 
Operator to predict the total contribution of BTM solar on their 
grid, as shown in Figure 3.

This approach can be quite cost-effective, particularly in 
areas having a large number of distributed PVs (California, 
for example, has more than 200,000 unique PV systems). 
It allows for wide-area aggregation to support independent 
system operators in utility-wide prediction and  also for 
regional analysis, where distribution system operators and 
planners need to understand localized impacts. One poten-
tial benefit of this approach is that the particulars of each 
system are explicitly captured. For example, a PV system 
that is oriented toward the east will produce a different 
power curve than a south- or west-facing system, so the 
fleet composition will influence the resulting power profile 
for the overall system. 
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Challenges, however, do exist for this approach. While most 
hardware, location and orientation information is typically well 
documented, dynamic elements about each PV installation such 
as shading and hardware system availability will also impact the 
accuracy of the prediction. Suitable approaches are being devel-
oped to account for these impacts. 

In applications where the objective is forecasting aggre-
gated PV production or net load across a large system and/
or where detailed data do not exist, other less detailed pre-
diction methods can be deployed based on combinations of 
existing data, such as substation loads and regional meteoro-
logical data. This “top-down” approach has the advantage of 
limited data requirements. Whereas the bottom-up approach 
uses validated models applied to each system, the less detailed 
top-down approach requires comparisons to metered data on 
a statistically significant number of sites for benchmarking its 
overall accuracy. Challenges with this approach center on the 
representation of the statistical sample to adequately depict the 
total solar contribution. Ongoing research is focused on deter-
mining the detail of system data required based on the given 
PV penetration. It is important to recognize that different end 
users may have different requirements in terms of the amount 
of detail needed. 

As an example, the forecasts for transmission system 
operators and distribution system operators in Germany 
are calibrated and evaluated against estimations of the 
solar production on a zip code level (Figure 4). Forecasts of 
aggregate BTM PV production are developed and validated 
based on the up-scaling of output from a select subset of 
representative PV sites. The real-time solar production is 
directly obtained from the solar inverters of these instal-
lations through companies that install PV modules and 
monitor their performance. This approach has two main 
advantages: first, the grid operator can predict solar output 
in real time, and, second, the forecasts can be optimized on 
a regional level. 

Comparisons between such estimations and metered data 
show a very strong correlation. Essential to this approach 
is consideration in the selection of representative sites, for 
which sufficiently granular and reliable production data must 
be available. Further, real-time telemetry is required if these 
sites serve as the basis for nowcasting (i.e., within horizons 
of one hour or less). The approach offers a good example of 
the data and telemetry requirements that will be important 
for system operators, distribution utilities, and others to con-
sider in their planning and interconnection processes.

PG&E Bay Area
PG&E Non-Bay Area
SCE Coastal
SCE Inland
SDG&E
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figure 3. Detailed site information and weather data, aggregated to fleet level, for the three major investor-owned utilities 
in California. (Courtesy of Clean Power Research.)
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figure 4. The real-time estimation of the solar power production on a zip code level 
in Germany based on online data from inverters. (Source: energy & meteo systems.)

Current Experience 
and Performance  
of Solar Forecasting
A key question for operators and 
other end users is “how well do solar 
forecasts perform?” The answer 
depends on a number of factors, 
many of which are also relevant for 
wind forecasting. For example, any 
forecast performance metric should 
be tied to the end-use application’s 
sensitivity to forecast error. How-
ever, many users (system opera-
tors, traders, utilities, etc.) may not 
have a quantitative understanding 
of their sensitivity to forecast error 
and the related value of the forecast. 
Therefore, a standard set of widely 
used metrics is typically employed. 
Standardized metrics facilitate the 
comparison of solar forecasts, but 
they may not accurately inform a 
specific user as to which forecasts 
provide the most value for their spe-
cific application. 

Currently, the three most widely 
used metrics for assessing deter-
ministic point forecasts are mean 
(bias) error, mean absolute error 
(MAE), and root mean square error 
(RMSE). These metrics may be 
applied using different approaches. 
The most widely used approach, as 
followed here, is to express the met-
rics as a percentage of the installed 
capacity over all daylight hours. 
Other approaches calculate the per-
centage change in these metrics relative to a reference forecast 
(persistence or climatology) or as a percentage of average actual 
production over the evaluation period. There is also a movement 
toward comparisons using “smart persistence,” which assumes 
that relevant conditions such as cloud cover and temperature 
remain the same but includes the underlying variation due to 
changing solar angle in the baseline. 

These metrics are simple to compute but one still needs to 
interpret the resulting metric values. Forecast performance is 
impacted by many factors, as described below.

1)	 Look-Ahead Time. One of the most intuitive factors 
that impacts forecast performance is the forecast look-
ahead time (also known as the forecast time horizon or 
lead time). Figure 5 shows an example development of 
the forecast error (error growth) over a forecast horizon 
of 85 h. The figure depicts the MAE over two years for 
the aggregate solar generation in Spain, although the 
pattern is somewhat typical for both individual facilities 

and aggregates of facilities. The MAE rises rapidly 
over the first few hours after the issue time. After about 
six hours, the rate of error growth decreases substan-
tially. It can also be seen that forecasting performance 
improves with further forecast system development in 
the region, as 2014 shows a significantly lower error 
rate than 2013 does. 

2)	 Variability in Solar Production. In general terms, 
absolute forecast performance is impacted strongly 
by the amount of atmospheric-based variability in 
the solar power production. For example, the abso-
lute level of cloud impact on solar irradiance is lower 
near sunrise or sunset, although the relative variation 
(the percentage of average irradiance change) may be 
much larger. Thus, variability in production and the 
magnitude of forecast errors tend to follow the diurnal 
cycle. This is illustrated in Figure 6 for a nontracking 
facility in Texas. The relationship between the diurnal 
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cycle of variability and MAE is clearly evident in data 
presented in this chart. 

3)	 Specific Plant Attributes. The various plant attributes 
of a solar generation facility are important as well, as 
Figure 6 also illustrates. The solid lines show the vari-
ability and MAE for a dual-axis tracking facility that 
is located close to (i.e., having very similar weather 
regimes) the facility without tracking, as represented by 
the dashed lines. The chart indicates that the variability 
and MAE for both facilities is similar at midday and 
near sunrise and sunset. However, the variability and 
MAE of the dual-axis tracker is substantially higher 
during the mid-morning and mid-afternoon hours. The 
impact of this pattern on the overall forecast MAE for 
the two sites is quite substantial. 

4)	 Spatial Scale. A fourth factor that has a significant 
impact on forecast performance is the spatial scale 

of the generation. Due to the well-known aggregation 
effect, forecasts for geographically diverse aggregates 
of solar generation facilities have smaller errors than 
the forecasts for individual facilities in the aggregate. 
Local effects, which are more random and more dif-
ficult to forecast, tend to average away when we look 
at the aggregated forecast. A broad view of the effect 
of aggregation on the performance of day-ahead solar 
power production forecasts is depicted in Figure 7. This 
chart shows the annual MAE over all daylight hours 
for day-ahead forecasts for a broad spectrum, ranging 
from individual centralized facilities to regional and 
system-wide aggregates of centralized facilities and 
distributed generation. The power of the aggregation 
effect in reducing the absolute forecast errors is quite 
evident. Note that many factors impact forecast perfor-
mance for a given entity of a specific size, such as the 
geographic diversity within the entity, the attributes of 
the facilities (e.g., tracking versus nontracking, and so 
forth), the amount of variability associated with local 
weather regimes, and the causes of the variability.

5)	 Other Weather Phenomena. While forecasting 
cloud cover is a predominant factor for solar forecast-
ing ,there are some other phenomena that can have a 
similar impact on the predictability of PV generation, 
especially on day-ahead and longer time scales. These 
include fog, snow, and dust. An example of the impact 
of fog and snow on the performance of forecasts for 
a large aggregate of generation facilities in Germany 
is shown in Figure 8. The errors are much larger in 
the spring and fall when fog is a significant factor in 
power production variability. 

Paths to Improved Solar Forecasting
Solar power forecasting is still a relatively new technology. 
Individual methods have deficiencies, such as the lack of 
attention that NWP models have traditionally paid to cloud 
cover variables and the relative immaturity of sky imaging 
techniques, while the blending of different forecasting tech-
niques is still less than optimal. The fact that much PV genera-
tion is BTM means some of the data needed to set up models 
may not be available, and methods are still being developed to 
forecast this type of PV generation. Probabilistic forecasting 
techniques that could significantly improve on the representa-
tion of uncertainty are still being explored. Finally, ineffective 
communication of forecast information to the users and the 
lack of end use tools for using forecast information hinder the 
extraction of full value from forecasts. 

A number of initiatives are currently underway in the 
United States and Europe to improve some of these key areas 
of solar power forecasting. These are covered in more detail 
in forums such as the Utility Variable Generation Integration 
Group’s annual forecasting workshop and the energy track 
of the American Meteorological Society, but the following 
describes the major research areas, with specific examples:
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Atmospheric Modeling Enhancement  
and Blending of Methods
The U.S. Department of Energy (DOE) is currently fund-
ing several efforts to improve the underlying models 
for solar forecasting under its SunShot initiative. This 
includes research by IBM on optimal blending of differ-
ent models using machine-learning strategies and by the 
National Center for Atmospheric Research (NCAR) on 
combining individual models including sky imaging, satel-
lite methods, and a solar-tuned NWP model to maximize 
the benefits of the individual methods. NOAA is adding 
various solar energy–related parameters, such as outgoing 
longwave radiation and incoming shortwave radiation, as 
well as direct and diffuse irradiance, to its hourly updated 
Rapid Refresh models. Efforts are also ongoing in Europe, 
including ones focusing on improving fog, snow, and dust 
representation in NWP models (for example, the MACCII 
project), and in academia, such as a University of Arizona 
project to develop a hybrid forecasting system at a high 
time resolution.

Incorporation of BTM into  
Load Forecasting Methods
The load forecasting community is evaluating different ways 
of incorporating BTM PVs into existing load forecasts and 
the costs and benefits of using more detailed weather and 
PV system data, where available. In California, a number 
of government funded efforts are underway, using infor-
mation about PV installations to predict the day-ahead and 
hour-ahead power output of the fleet. Clean Power Research 
has worked to integrate its solar forecasts into Itron’s load 

forecasting tool, focusing on improvements to BTM forecast 
accuracy and integration of direct power prediction into the 
neural net load forecasting framework.

Cloud Propagation Techniques
Sky imaging and satellite-based cloud propagation methods are 
still at early stages of development, and several research groups 
are actively working to improve them. For instance, Colorado 
State University is developing a satellite-derived insolation 

figure 7. The relationship of the annual day-ahead solar 
power forecast MAE (% of capacity) over all daylight hours 
to the installed capacity of the forecast target entity for a 
broad spectrum of entities (individual facility, regional, or 
system-wide aggregate).
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forecast in concert with colocated winds from an NWP model 
to capture the movement of clouds at different heights. In the 
NCAR SunShot project, a cloud nowcasting prototype based on 
multiple satellite infrared sensors and a simplified NWP model 
compares infrared radiance observations with their equivalents 
from a numerical model to develop a more accurate cloud pro-
file that can be used with the other forecasting methods. 

Probabilistic Forecasting
Ongoing research in this area includes improved probabi-
listic treatment of atmospheric physics models, as well as 
improved representation of uncertainties in cloud formation 
and decay. This will result in increased reliability and sharp-
ness. One novel method is the analog ensemble approach, 
which, instead of generating multiple model forecasts, 
searches the past history for similar forecasts and makes 
corrections to the forecast according to the error in prior 
forecasts. The prior analogs become an ensemble that quan-
tifies the uncertainty of the forecast.

Integration into System Operations
While improving the underlying forecasts is important, it is 
also crucial that they are integrated into system operations so 
that operators can obtain the full value from the forecast. Many 

utilities now receive forecasts; however, most are still learn-
ing how to use them in their decision-making processes. There 
are significant efforts to integrate solar power forecasts more 
deeply into system operations. For example, Hawaiian Electric 
Company has supported the development of a Solar and Wind 
Integrated Forecast Tool, which is built on an optimized mix of 
various approaches described earlier and has deterministic and 
probabilistic elements as well as variability and ramp-rate pre-
dictions. Work is underway to integrate these forecast outputs 
directly into the energy management systems. The Red Eléc-
trica Control Centre of Renewable Energies in Spain, shown in 
Figure 9, can identify risks, anticipate the behavior of solar and 
wind, and compensate for their variability, without compromis-
ing the quality and security of supply. 

Research on methods for using probabilistic forecasts to opti-
mize system operations based on stochastic optimization tech-
niques is being carried out in various institutions. For example, 
Sandia National Laboratories is developing a toolkit to dem-
onstrate use of stochastic unit commitment, while the Electric 
Power Research Institute is investigating the use of probabilis-
tic information to develop more intelligent operating reserve 
requirements. Power system operators and independent power 
producers could potentially see benefits by incorporating fore-
cast uncertainty directly into their decision making.

One of the most intuitive factors that impacts forecast performance 
is the forecast look-ahead time (also known as the forecast time 
horizon or lead time).

figure 9. Red Eléctrica Control Centre of Renewable Energies in Spain. (Courtesy of Red Electrica Espana.) 
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Finally, the need for an ability to evaluate forecasts on the 
basis of the value they provide is driving several research and 
development efforts. As shown earlier, there are a variety of 
metrics that can be used, and currently there is typically not 
a direct link between forecast performance metrics and the 
value a forecast provides. To this end, the DOE efforts men-
tioned earlier are developing and demonstrating a set of use-
ful metrics for assessing performance of deterministic and 
probabilistic forecasts against both error-based metrics and 
metrics that link to the economic value of the forecast via 
production-cost modeling and reserve analysis. 

Summary and Conclusions 
Solar forecasting is one of the lowest cost methods of efficiently 
integrating solar energy. In this article, we have focused on 
the current state of solar forecasting and identified key issues 
related to its development and application. The process of solar 
forecasting for various time horizons, methods, and applica-
tions has many similarities to wind forecasting, but as solar 
output is strongly linked with cloud cover, there are other con-
siderations and possibilities. 

Most NWP models do not run at spatial resolutions that are 
high enough to explicitly model clouds and do not use detailed 
data about cloud cover and cloud formation when initializing. 
This means the first three to six hours of most current NWP 
models are not particularly useful for solar forecasting. As a 
result, methods such as sky imaging and satellite data have 
been used to predict near-term solar output, with some suc-
cess. Additionally, increases in model resolution and more 
frequently updated models are helping advance forecasting of 
solar irradiance in NWP. Even with improved accuracy, it will 
still be important to quantify the uncertainty in the forecast 
to  ensure efficient integration, and so we described various 
methods for quantifying uncertainty.

As performance is a key parameter to any new develop-
ment, we demonstrated how accuracy can be measured and 
evaluated, with a focus on how the metrics can influence the 
end result. We showed some of the key factors driving uncer-
tainty such as the look-ahead horizon, forecasting interval 
width, tracking systems, and system size. By considering 
these factors in plant design and electric system design we 
can reduce uncertainty and thus lower the cost to integrate 
solar energy.

BTM PV is likely to provide a large part of society’s 
energy needs in the future. Both detailed bottom-up forecast-
ing methods and aggregated top-down forecasting methods 
can be used to manage BTM solar generation. While detailed 
methods are likely to be more accurate, data is not always 
available, and certain applications may not require such a 
fine level of detail. With increasing penetration of BTM 
PV, data provision and availability will become increas-
ingly important for successful forecasting and integration. 
This includes improved representation of static site data, but 
also, where possible, increased access to telemetered output 
data or historical meter data. Ongoing research focuses on 

all aspects of the value chain of forecasting, including not 
just improving the underlying forecasting methods and com-
bining different forecasting techniques, but also on the ways 
that solar forecasts are valued and used in operations.
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