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ELECTRICITY GENERATED FROM WIND POWER WILL PLAY AN IMPORTANT ROLE
in the future energy supply in many countries. This implies the need to integrate this power into
the existing electricity supply system, which was mainly designed for large units of fossil fuel
and nuclear power stations. Wind power has different characteristics and therefore this integra-
tion leads to some important challenges from the point of view of the electricity system.

The availability of the power supply generated from wind energy varies fundamentally from
that generated conventionally from fossil fuels. The most important difference is that wind power
generation depends on the availability of the wind; i.e., it is weather dependent. In the electricity
system, supply and demand must be equal at all times. Thus, in an electricity system with an
important share of wind power, new methods of balancing supply and demand are needed.

Wind power forecasting plays a key role in tackling this challenge. It is the prerequisite for
the integration of a large share of wind power in an electricity system, as it links the weather-
dependent production with the scheduled production of conventional power plants and the fore-
cast of the electricity demand, with the latter being predictable with reasonable accuracy.

The wind power forecast accuracy is directly connected to the need for balancing energy and
hence to the cost of wind power integration. Consequently, a large amount of research has been
directed toward the development of good and reliable wind power forecasts in recent years and
many different forecasting systems with different approaches have been developed. In countries
with a substantial share of wind power in the electricity system like Denmark, Germany or
Spain, wind power forecasting systems are already an essential part of grid and system control.
Figure 1 provides an illustration of a wind power management system operating in Germany.
Similar developments are underway in North America as well.

North American Example: Xcel Energy
Xcel Energy is a major utility operator in the central and north-central areas of the United
States. Commercial wind power development within the Xcel Energy service areas is currently
growing to a point where wind generation will no longer be a negligible fraction of the regional
electric energy supply.
Xcel system operators will require accurate wind estimates, both in the operations schedul-
ing and real-time operations time frames, to deal with a variety of issues around meeting energy
demands of customers. With
financial support from the

Models and Methods of Xcel Energy Renewable

Development Fund in Min-

Wind Forecasting for Utility et Xeel and WindLogies

have been leading a major
Operatlons Plannlng project to define, design,

build, and demonstrate a

complete wind power fore-

casting system for use by

Xcel system operators. Key
objectives are to optimize the way wind forecast information is integrated into the control room
environment and evaluate the impact of the wind forecast on control room operations. Figure 2
provides an illustration of the system under development for Xcel Energy.

The project approach consists of three critical pieces blended into a cohesive effort. First, a
wind plant output forecasting system has been designed and implemented to deal with all wind
plants on the Northern States Power (NSP) portion of the Xcel system and deliver results in a
way that aligns with the way that the control room operator views the system. The second piece
is to use the forecasting results in both operations planning and real-time operations time frames
to reduce the cost of ancillary services required to integrate the wind plants into the power
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more flexible in following load
changes, uncertainty in the sched-
ule of wind energy may impact the
purchase and storage of gas for
system operations. Unit commit-
ment planning, gas purchasing, and
unforced outage contingencies all
require various lead times for cost
and operational optimization.
While wind energy brings econom-
ic and environmental benefits to the
system, it also introduces some
challenges, and wind forecasting is
clearly one of the most direct and
valuable ways to reduce the uncer-
tainty of the wind energy produc-
tion schedule for the power system.

Applications of Wind
Power Forecasting

The most important application for
wind power forecasting is to reduce

figure 1. Screenshot of ISET wind power management system (WPMS).

system operation. The third aspect is to assess the tools cur-
rently used to schedule, commit generation, and operate the
system in real time, and then identify prospective approaches,
algorithms, and operating procedures that can lead to more
optimal reserve scheduling and operation in the face of
increasing wind generation.

As will be discussed below, several challenges exist in the
application of weather models to the prediction of wind facili-
ty output, such as the impact of local scale terrain and land
use, how best to utilize outputs from multiple prediction mod-
els, and how to incorporate site-specific information such as
directionally dependant array loss. A combination of technolo-
gies must be used to address these challenges, thereby reduc-
ing the forecast errors and the uncertainty in the forecast.

As the amount of wind energy production grows in pro-
portion to the electric load and other resources in the genera-
tion portfolio, errors in wind generation forecasting can
become very significant to operations, and accurate wind
power forecasts will become increasingly important. The
growth of wind across all three of Xcel Energy’s operating
systems is requiring a greater scrutiny and investigation into
operational concerns, future resource timing and capabilities,
and improvement in Xcel’s predictive and forecasting tools to
continuous provide reliable, lowest cost energy to customers.

It is also important to note that the issues related to wind
integration can vary from one system to another. For example,
the wind integration impacts on Xcel’s Colorado system,
where a large percentage of the generation is from gas, are
somewhat different than those on Xcel’s NSP system, where
coal generation is on the margin. While gas units are generally

IEEE power & energy magazine

the need for balancing energy and
reserve power, which are needed to
integrate wind power into the bal-
ancing of supply and demand in the electricity supply system;
i.e., to optimize the power plant scheduling. This leads to
lower integration costs for wind power, lower emissions from
the power plants used for balancing, and subsequently to a
higher value of wind power.

A second application is to provide forecasts of wind
power feed-in for grid operation and grid security evaluation,
as wind farms are often connected to remote areas of the
transmission grid. To forecast congestion as well as losses
due to high physical flows, the grid operator needs to know
the current and future wind power feed-in at each grid con-
nection point.

The objectives of a wind power forecast therefore depend
on the application:

For optimized power plant scheduling and power bal-
ancing, an accurate forecast of the wind power genera-
tion for the whole control area is needed. The relevant
time horizon depends on the technical and regulatory
framework; e.g., the types of conventional power
plants in the system and the trading gate closure times.

For determining the reserve power that has to be held
ready to provide balancing energy, a prediction of the
accuracy of the forecast is needed. As the largest fore-
cast errors determine the need for reserve power, these
have to be minimized.

For grid operation and congestion management, the
current and forecast wind power generation in each
grid area or grid connection point are needed. This
requires a forecast for small regions or even single
wind farms.
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Steps in a
Forecasting System
In producing a wind power fore-
cast, different steps can be distin-
guished:
numerical weather prediction
wind power output forecast
regional upscaling.

As the first step, a weather pre-
diction including the forecast of
the wind speed and possibly some
other meteorological parameters is
needed for the wind power fore-
cast. This is provided by numerical
weather prediction (NWP) models.

The NWP data are used as input
to the next step, the wind farm
power output forecasting. This
takes into account the local meteor-
ological influences on the wind
speed and direction, the power con-
version characteristics of the tur-
bine, wind farm shading, and other
effects that influence the overall
power output. Different approaches

and combinations of approaches
have been developed and are inuse. ~ figure 2. Xcel energy wind power forecasting system screenshot.

For forecasts with a shorter time
horizon, online measured wind
speeds and/or wind farm power output are used as additional ~measurements all over the globe, carried out by meteorolo-
input to the forecasting. gists, weather stations, satellites, etc. All available data are

If the forecast is needed for a larger region with very many used as input to compute a global NWP model, which models
wind farms or wind turbines, forecasts are compiled only for  the atmosphere of the planet. The NWP model calculates
some representative wind farms and the results from these are  the future state of the atmosphere from the physical laws
scaled up to regional forecasts as a
third step. This minimizes the effort
involved in making the forecasts and
reduces the amount of data needed
from NWP models as input. The
accuracy of the forecasts does not
decrease much, since wind farms
close to each other show a similar
behavior.

Numerical Weather
Prediction

Weather forecasts from NWP mod-
els are the most essential input
needed for almost all wind power
forecast models. Usually a model
chain of hierarchical levels with dif-
ferent NWP models and increasing

resolution is used. figure 3. Horizontal grid of a global numerical weather prediction model and
The model chain starts with  enlarged area covered by a local area model (figures taken from the German
meteorological observations and  Weather Service).
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NWP Model Starts

NWP Model Results Sent to Forecasting Model

Wind Power Forecast Results

Day-Ahead Trading Closes

Different Approaches for
the Power Output Forecast
The aim of a wind power forecast
is to link the wind prediction of
the NWP model to the power
output of the turbine. Three fun-
damentally different approaches
can be distinguished:

the physical approach aims
Forecast Period to describe the physical
v \ process of converting wind
to power and models all of
00:00 h UTC : : 3 : .
12:00 h UTC 24:00 h UTC 12:00 hUTC  24:00 h UTC the steps involved

the statistical approach
aims at describing the con-

figure 4. Typical time schedule for wind power forecasting used for day-ahead trading.

nection between predicted
wind and power output
directly by statistical analy-
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figure 5. Example time series of online measurement and forecasts of wind power
generation in Germany; forecasts with different forecast horizons are shown.

governing the weather. Since these calculations are very com-
putationally expensive, the resolution of a global model has to
be rather coarse (see Figure 3, left). Global models are in
operation at only about 15 national weather services.

To provide more accurate weather forecasts, local area
models (LAMs) are used, which cover only a small part
of the Earth, but can be run with a much higher resolution
(see Figure 3, right). These models use as input the fore-
casts of the global model and calculate a weather forecast
taking into account the local characteristics of the terrain.

One example of a LAM is the LME model of the German
Weather Service (DWD). It covers central Europe with
105,625 grid cells (325 by 325). This leads to a horizontal
resolution (cells size) of about 7 x 7 km. The forecast hori-
zon of the operational model is 48 hours and the resolution is
one hour. Model runs are started twice daily at 00 UTC and
12 UTC.
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tical or Al methods often use
knowledge of the physical process-
es, like the shape of the power
curve, in designing their models.

The physical approach contains a chain of models of the
different physical processes involved:

wind conditions at the site and hub height of the
turbines

wind farm shading effects

turbine power curve

model output statistics.

Statistical approaches analyze the connection between
weather forecasts and power production from time series of
the past and describe this connection in a way that enables it
to be used for the future.

Like statistical models, AI methods also describe the con-
nection between input data (the predictions of the NWP
model) and output data (wind farm power output). But
instead of an explicit statistical analysis, they use algorithms
that are able to implicitly describe nonlinear and highly com-
plex relations between these data. For both the statistical and

november/december 2007
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predictions and power output of
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is used in practical applications.
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Forecast Horizon

The forecast horizon is the time
period between the time at which
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cal and regulatory conditions and
on the feasibility of forecasting.

For current wind power fore-
casting, deterministic forecasts are used up to a forecast hori-
zon of three to five days. Two primary forecast horizons have
to be distinguished: The day-ahead forecast and the very-
short-term forecast. The day-ahead forecast is mainly used
for day-ahead power trading. The forecast horizon therefore
depends on the organization of the trading; e.g., the gate clo-
sure time and the trading days.

An example for a gate closure time of 1200 hours for the
next day is shown in Figure 4. The NWP model starts running
at midnight with the observations from the day before. It fin-
ishes calculation around 0700 hrs in the morning and sends the
information to the wind power forecasting system. This usually
has a very short calculation time and the results are available a
few minutes later. They are analyzed and used for trading the
power for the next day until at 1200 hrs the trading ends.

This means that the calculation of the forecast starts 48 hours
ahead, counted from the start of the NWP model. If there is no
trading on weekends and public holidays,

figure 6. Example time series of monitored and forecast power output for Germany.

Forecast Accuracy

The accuracy of a wind power forecast is of course the most
important criterion for its quality and value. Figure 6 shows
an example time series of the day-ahead forecast for
Germany together with its monitored values for one month.

Since the forecast accuracy changes with time, a long
time period has to be considered to evaluate the quality of a
forecasting system.

The forecast error can be displayed in as a frequency dis-
tribution. Figure 7 shows an example using forecast data
from a day-ahead forecast performed with ISET’s wind
power management system (WPMS) using NWP data from
the German weather service.

“Learning Curve” of the Forecasting Accuracy
Since the WPMS forecasting system was first implemented in
2001, it has been improved constantly. The result is a continuous

lead time for the calculation for the “day-

Day-Ahead Forecast Germany

ahead” trading actually can be 96 hours
or longer. 50%
Very-short-term wind power fore- 45% A
casting is mainly used for intraday trad- T 40% |
ing and activation of reserves. Its main > 35%
characteristic is that it utilizes online % 30% A
data from measurements of actual S 25% |
power output and/or wind speed. For % 209% -
very short forecast horizons, this leads -% 159% -
to a very important increase in forecast g 10% |
accuracy (see Figure 5). Usually NWP 59 |
model data and online measurement
data are combined for the short-term 0% -45
forecast, giving more weight to the
NWP data for longer forecast horizons

365 25 -15 -5 5) 15 25 35 45

Normalized Error [%)]

and more weight to online data for
shorter horizons.
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figure 7. Frequency distribution of the difference between forecast and moni-
tored power output.
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gigawatts of installed capacity will lead to
i1 = a decrease in the relative forecast error,
since there will be cases where the fore-
cast errors of different regions will partly
s cancel each other out. An example of this

T~ is shown in Figure 9. It shows the fore-
cast error for the three German control
areas with large wind power capacity
(those of E.on, VE-T, and RWE) together
with the error of the aggregated forecast

_.
© o
Il Il

I

RMSE in % of Installed Capacity
0]
1

\ for an example time series of four days. It

77 N can be seen that the forecast error for the
aggregated wind power always stays

%= below 2.5%, while the error for single

control areas reaches up to 8% of the
installed capacity.

5 T T T T T T T T T T T T T 1
2000 2001 2002 2003 2004 2005 2006 2007
Examples of
Current Research

figure 8. Development of the forecasting error of the operational day-ahead
forecast for a control zone; shown is the root mean square error of the forecast Multimodel Approach for Wind
time series compared to that of the online monitoring. Power Output Forecast

To improve the forecast accuracy, other

types of Al models were investigated in a
comparative study. In detail, these were:
10% artificial neural networks (ANNs)
8% as reference
< 6% mixture-of-experts (ME)
5 ° nearest-neighbor search (NNS)
T D 7 X combined with particle swarm
% 2% IS {//WX, optimization (PSO).
S 0% VI support vector machines (SVMs).
£ : g Ve R ] Additionally we built an ensemble
o 2% + ._ = - 2 N —+ . . .
N . ! Lo including all models. A comparative
t_é! —4% : —_EON T study between the different forecasting
g 6% --- VET by methods has been performed using
—- RWE v .
_8% Germany power‘output measurements of ten wind
109 I farms in the E.on control area and corre-
T 1 1212 13.12 1412 sponding NWP prediction data for these
points from the German weather service.

Figure 10 shows the comparison of the
mean RMSE for the ten wind farms. It
can be seen that the SVM yields the best
results in this case. Also, a simple
reduction of the forecast error, resulting in a “learning curve” of ~ ensemble approach has been tested by averaging the outputs
decreasing forecast error over time, as can be seen in Figure 8,  of the models studied. As can be seen in Figure 10, even this
which shows the development of the forecasting error for the  simple ensemble improves the forecast accuracy compared to
example of the E.on control area. The accuracy of the opera-  the results of the single ensemble members.

tional wind power forecast has improved from approximately

10% root mean square error (RMSE) at the first implementation ~ Multimodel Approach for Numerical

figure 9. Example time series of relative forecast error for the individual con-
trol zones of E.on, VET, and RWE, and for the whole of Germany.

in 2001 to an RMSE of about 6.5% in 2005. Weather Forecast Models
Up to now the usual practice of calculating wind power involved
Effect of Spatial Spread using only a single NWP model, with the risk of high and costly

If many wind farms are forecast together, the forecast error  errors in prediction. Particularly in the case of extreme events,
decreases and the aggregation of large regions with several individual models can go wrong. In such cases improvements in
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Whenever possible, aggregating wind power over a large area
should be performed as it leads to significant reduction of forecast
errors as well as short-term fluctuations.

forecast accuracy bring decisive economic advantages in the face
of high energy costs. Deviations in prediction do not occur
simultaneously in all NWP models. Depending on the weather
conditions, each has its own strengths and weaknesses.

A study to investigate the influence of merging different
NWP models on the accuracy of the wind power forecast has
been performed by ISET. Three different NWP models have
been used for a day-ahead wind power forecast for Germany.
All three models have been used as input to the WPMS based
on the ANN method. A simple combination of the three mod-
els has been tested by averaging their forecasts. It can be seen
that even this simple approach improves the forecast accuracy
very significantly compared to the results of the single mod-
els. The resulting RMSE for the combined model for Ger-
many is 4.7%, while the values for the individual forecasts
are between 5.8% and 6.1%.

Following the idea of combination, the next step is to find
an optimal combination of weather models with regard to dif-
ferent weather situations. Energy & Meteo Systems has devel-
oped a special procedure to automatically classify weather
conditions. Consequently, the behavior of the models can be
analyzed in typical weather conditions and an optimal weight-
ing can be achieved in order to use the specific strengths of
various weather models.

This project on forecast combi-

cation scheme based on meteorological experience and auto-
matic weather classification is used. With this advanced combi-
nation tool, the best weight for each meteorological model
according to the prevailing weather situation can be deter-
mined. Choosing a combination of the best performing weath-
er models for the specific situation leads to a significantly
improved wind power prediction.

The results show that the combined wind power forecast
significantly outperforms the best forecast based on a single
weather model, as well as a simple fixed combination (Figure
11). In particular, in dynamic weather situations the com-
bined forecast reduces large and costly forecast errors; i.e., it
can be shown that the combination has most benefits for
extreme situations (Figure 12).

The weather-dependent combination of numerical weather
models has been implemented as a software tool and is run-
ning operationally at the RWE TSO.

Multischeme Ensemble Approach

for Wind Power Predictions

Instead of using existing NWP models, Weather & Wind
Energy Prognosis (WEPROG), based in Germany and
Denmark, goes one step further and runs their own multischeme

nation is jointly carried out by Ener-
gy & Meteo Systems, the German 12
weather service DWD, and RWE
TSO, one of the German transmis-
sion system operators. The project is
supported by the German Ministry
for the Environment. Data of NWP
models from ten European weather
services are used to calculate fore-
casts of the anticipated power pro-
duction of wind farms. In order to
be used in the combination, the
physical wind power prediction sys-
tem Previento is individually opti-
mized for each NWP model and the
characteristic behavior of the differ-
ent forecasts is carefully analyzed. 9 -
Based on these high-quality single

=
—_
|

—_
o
|

RMSE in % of Installed Capacity

ANN

ME NNS SVM

Combination

forecasts, combinations are formed.
To find optimal combinations for

specific weather situations, a classifi- ~ methods.
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figure 10. Comparison of the mean RMSE of a wind power forecast for a group of
single wind farms obtained with different Al methods and with a combination of all
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certain physical or dynamical
processes (called the “parameteri-

7,0
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zation schemes”).
The ensemble approach is tar-

geted to generate the uncertainty
of the weather forecast. The dif-

5,0

ferences in the equations lead to
different methods of solving

4,0

these equations and thereby gen-
erates different end results.

3,0

Because all the equations used in
the different forecast “ensemble

RMSE [% Installed Power]

2,0

members” are describing the
same processes, but vary in their

1,0

assumptions to make them solv-
able, they in fact describe the

0,0
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Model 4

changing physical uncertainty of

el the weather forecast. Figure 13

figure 11. Results from the weather-dependent combination of different NWP mod-
els by energy and meteo systems for the aggregated wind power production in Ger-
many. The combination clearly outperforms predicitons based on one single model.

ensemble prediction system (MSEPS) as an integrated weath-
er and wind power forecasting system.

The purpose of this system is to generate a best guess and
especially probabilities of the evolution of the local weather.

The MSEPS contains 75 ensemble members, which are
individual forecasts referred to as “members.” They are
formed with a multischeme approach. This means that each
forecast member comprises a different set of equations for

shows an example on how the
observed wind power changes
within the uncertainty band over
the forecast length.

As mentioned above, it is
important to have knowledge of
uncertainties of this forecast. A confidence interval of the fore-
cast gives a quantitative measure of the possible deviation of the
actual wind power from the forecast, depending on the meteor-
ological input data for each time stamp. Beside the best guess of
the actual wind power, the multischeme approach creates this
uncertainty of the forecasts like the multimodel does. However,
the disadvantage of the multimodel, the lack of knowledge
about the exact differences of the models, does not apply to the
multischeme approach.

The Use of Ensemble

60 |-

40 |-

Normalized Power
o
o
1

20| =

100 [-
Data for Different Wind
0|~ Power Prediction
Measurment
80 |- Model 1 Methods . .
Model 2 A recent study investigated the
70 |- Mggg, 2 impact on the forecasting error of
Combination

converting from meteorological
parameters to wind power by using
different data sets from the MSEPS
ensemble. Six different methods
were applied at different locations
to convert wind and other weather
parameters into wind power output.

The results of approximately
one year of data showed forecast
improvements relative to the most

Days

: simple algorithm of 9% to 24%,
dependent on the location and size

figure 12. Selecting the optimal combination of numerical weather models (same as
Figure 11) for individual weather situations reduces the danger of large forecast

errors in extreme events such as storm fronts.
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of the forecasted area.
Hence, the forecast quality
could be improved significantly
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Wind forecasting is clearly one of the most direct and valuable
ways to reduce the uncertainty of the wind energy production
schedule for the power system.

for all investigated methods, from a relatively simple
power curve conversion method to a more complex
method, when making use of the additional information
from the ensemble.

Another recent study by ISET developed a new wind
power prediction model based on an artificial neural network
(ANN) approach, where various combinations of ANNs with
input from WEPROG's MSEPS ensemble prediction system
were generated.

The statistical results at two selected wind farms
showed that the improvement for the day-ahead forecasts
by intelligently combining the ensemble data was approx.
10%. To conclude, combining the individual wind power
forecasts derived from a physically consistent ensemble
prediction system (multi-scheme approach) such as
WEPROG's MSEPS does not only result in significant
improvements compared to single forecasts, but has also
the advantage of being a more cost efficient alternative to

figure 13. Example of a 72-hour wind power forecast with changing uncertainty from WEPROG'’s MSEPS ensemble sys-
tem for the national grid in Ireland (52 wind farms with 645-MW installed capacity). The black dashed line is the obser-
vation, the red line is the EPS maximum, and the green line is the EPS minimum. The orange line is the EPS mean, and
the yellow and white dashed lines are best guesses with different emphasis on the end result; the gray shading indicates
the probability distribution of the ensemble members: low uncertainty is dark and high uncertainty is indicated by light
gray or no color.
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figure 14. Example of a ramp rate forecast for the pilot study of the Alberta transmission system operator.

the use of combination of forecasts from different NWP is crucial due to the high concentration of capacity in a
providers (multimodel approach).

Additional Applications from

the Ensemble Information

Apart from improvements relative to single forecasts, the
ensemble approach gives the opportunity to predict the reserve
requirements from the uncertainty of the weather development
and also the weather extremes that cause steep ramp rates of
wind power. A wind power pilot forecasting study initiated by
the Alberta Electric System Operator (AESO) compares three
different forecasting methods on the single best forecast but
also uncertainty estimates and ramp rate predictions in a one-
year evaluation period. An example of such a ramp rate fore-

cast over 72 hours is shown in Figure 14.

Future Challenges

As wind power capacity quickly grows, forecast accuracy
becomes increasingly important. This is especially true
for large offshore wind farms, where an accurate forecast

88 IEEE power & energy magazine

small area. Encouragingly, in recent years the forecast
accuracy has improved constantly, and it can be expected
that this increase can be maintained into the future. Antic-
ipated improvements for the future include the following:
The development of operational ensemble model sys-
tems using the data from several numerical weather
prediction models will clearly improve the forecast
accuracy. Also, an improved method for model combi-
nation will be developed.
Improvements in the NWP models and more frequent
updates of the weather predictions will improve the
input data for wind power forecasting.
Further improvements in the forecasting methods and
improved methods for the combination of different
forecasting methods can be expected to further reduce
forecasting errors.
Especially for short-term wind power forecasting,
additional use of online wind measurement data has
the potential for improved forecasts.
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Forecast accuracy is only one of the challenges for wind
power forecasting systems of the future. Additionally, the
scope of systems will have to be extended to meet future
challenges:

Wind power forecast in the offshore environment has
the potential to become more reliable than on land, if
specific offshore forecast models are developed. The
meteorological situation in the near-shore marine
atmospheric boundary layer differs from that over land.
The atmospheric stability and the distance to the shore
have an especially important influence over the sea.
Improved forecasts for short time horizons will be
needed for grid safety and intraday trading.

Prediction of the probability distribution of the fore-
casting error and reduction of events with large errors
give the opportunity to reduce the reserve capacity for
balancing wind power forecast errors.

Forecasts in high spatial resolution for each grid node
of the high-voltage grid will be needed for high wind
power penetration, in order to tackle the problem of
congestion management.

Conclusions

Due to increasing wind power penetration, the need for and
usage of wind power prediction systems have increased during
the last 10 or 15 years. At the same time, much research has been
done in this field, which has led to a significant increase in the
prediction accuracy recently. With many ongoing research pro-
grams in the field of NWP, as well as in the power output predic-
tion models (transforming wind speed into electrical power
output), one can expect further improvements in the future.

For the time being, three measures are taken as best prac-
tices to reduce prediction errors:

Combination: Combinations of different models can be done
with power output forecast models as well as with NWP models
(multimodel and multischeme approaches). Reductions in RMSE
of up to 20% were shown with intelligent combinations.

Forecast horizon: As expected, a shorter forecast horizon
leads to lower prediction errors. However, the organization of
the electricity market as well as the conventional generation
pool have a large influence on the needed forecast horizon.

Spatial spread: The forecast error depends on the num-
ber of wind turbines and wind farms and their geographical
spread. In Germany, typical forecast errors for representa-
tive wind farm forecasts are 10-15% RMSE of installed
power, while the error for the control areas calculated from
these representative wind farms is typically 6-7%, and that
for the whole of Germany only 5-6%. Whenever possible,
aggregating wind power over a large area should be per-
formed as it leads to significant reduction of forecast errors
as well as short-term fluctuations.
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